Um Crescente é equivalente a um triângulo

Apresentamos a seguir uma construção dinâmica a ilustrar a equivalência de um triângulo a um Crescente limitado por dois arcos circulares.

O enunciado do problema desta entrada é:
Demonstrar que um Crescente Vermelho (entre dois arcos) na figura é igual em área a um triângulo.

Para além da superfície que estudamos, apresentam-se inicialmente retas, segmentos e arcos que ajudam a compreender a construção e permitem determinar a sua área da superfície em estudo ou a compará-la com outras áreas. Na construção deve recorrer à barra de navegação para passos da construção e seguir etapas da construção e os raciocínios até à demonstração (acompanhados de fórmulas que não escondem o uso dos axiomas da igualdade em geral e neste caso de igualdade entre áreas)
  1. Apresenta-se inicialmente uma circunferência de centro $\;O\;$ e diâmetro $\;AB\;$ e a mediatriz de $\;AB\;$ que intersecta a circunferência em $\;C, \;D.\,$
  2. 11 agosto 2017, Criado com GeoGebra

  3. A seguir mostra-se a circunferência de centro em $\;D\;$ e raio $\;DA:\;$.
    Como $\;CD\;$ é a mediatriz de $\;AB,\;$ sabemos que $\;AD=BD;\;$ e, como $\;AB\;$ é diâmetro de $\;(O, \;OA)\;$ e $\;D \in (O,\;OA),\;$ o triângulo $\;ABD\;$ é rectângulo em $\;D\;$. Por isso, $\;AB^2= 2AD^2 .\;$ Claro que também podíamos ter usado o facto de $\;ODA\;$ ser triângulo rectângulo em $\;O\;$ para concluir que $\;AD^2 = 2OA^2\;$
  4. O semicírculo de centro $\;O\;$ e raio $\;OA\;$ que designamos por $\;\widehat{ACB}\overline{BA},\;$ neste passo evidenciado, tem área $$\; \frac{\pi\times OA^2}{2}= \frac{\pi \times 2.OA^2}{4} =\frac{\pi \times AD^2}{4}\;$$
  5. Chamamos Crescente ao que sobra do semicírculo vermelho após retirarmos o segmento circular $\;\widehat{AB}\overline{BA}\;$ do círculo $\;(D,\;DA).\;$
  6. O segmento circular referido tem área igual à área do que sobra do sector circular $\;D\widehat{AB}\;$ (quarto do círculo) $$\;\frac{\pi \times AD^2}{4}$$ depois de lhe retirarmos o triângulo $\;ABD\;$ rectângulo em $\;D\;$ de área $$\; \frac{AD^2}{2}$$
  7. Por um lado a área do Crescente é igual à área do semicírculo de centro $\;O\;$ e raio $\;OA\;$ $$\frac{\pi \times AD^2}{4}$$ subtraída da área do segmento que é, como vimos, $$\frac{\pi \times AD^2}{4} - \frac{AD^2}{2} $$ ou seja, $$ \mbox{Área do Crescente} = \frac{\pi \times AD^2}{4} - \left(\frac{\pi \times AD^2}{4} - \frac{AD^2}{2}\right)= \frac {AD^2}{2}= \mbox{Área do triângulo}\,\;\; ABD $$ como queríamos demonstrar.


Cluzel, R.; Robert, J-P. La Géometrie et ses applications. (Enseignement Technique) Librairie Delagrave. Paris: 1964
Caronnet, Th. Éxércices de Géométrie -quatrième livre: Les Aires 4. éd.,Librairie Vuibert. Paris:1947