Uma superfície de gumes circulares equivalente a um quadrado

Apresentamos a seguir uma construção dinâmica a ilustrar a equivalência de um quadrado a uma superfície limitada por arcos de circunferências.
Tomamos um quadrado $\;ABCD\;$ e uma das diagonais, por exemplo, $\;BD\;$ e consideremos o arco $\;BD\;$ de centro em $\;A\;$ e os arcos $\;BGA\;$ - de diâmetro $\;AB,\;$ centro $\;E\;$ - e $\;AGD\;$ - de igual diâmetro $\;DA,\;$ e centro em $\;F\;$. Estes três arcos circulares limitam uma superfície (a vermelho na figura abaixo)
O enunciado do problema desta entrada é:
Demonstrar que a superfície a vermelho na figura é igual em área a um quadrado de lado $\;\displaystyle\frac{AB}{2}\;$ (um quarto do quadrado $\;ABCD)\;$.

Nota Daqui para a frente, por exemplo, estamos a usar $\;E, \widehat{AGB}\;$ para designar o semicírculo de diâmetro $\;AB\;$ ou $\;(A, \hat{BD})\;$ o arco de centro $\;A\;$ de extremos $\;B, \;D\;$ (quarto de circunferência na figura). Para além da superfície que estudamos, apresentam-se inicialmente retas, segmentos e arcos que ajuda a compreender a construção e permitem determinar a sua área da superfície em estudo ou a compará-la com outras áreas. Partimos dos seguintes dados:

3 agosto 2017, Criado com GeoGebra