Primeira.
Na entrada anterior, concluíamos com a afirmação de que se entre os pontos A, B, C e D colineares se estabelecesse uma relação harmónica, então a razão cruzada (a,b;c,d) seria -1. Este facto decorre do anterior resultado sobre permutações de pontos e de razões cruzadas que relembramos agora as que nos interessam para calcular a razão cruzada de quatro pontos em relação harmónica : Assim é natural dizermos que a razão cruzada (a,b;c,d)=-1 é a razão harmónica e às razões cruzadas diferentes de -1 chamamos razões anarmónicas.

Segunda.
Para a construção que se segue, tomamos 3 pontos colineares A, B, C sobre uma mesma reta. Para determinar um conjunto harmónico de que esses três pontos sejam elementos, tomámos um ponto auxiliar O e traçamos AO, BO e CO. Sobre CO tomamos um novo ponto auxiliar P e traçamos AP e BP. A'=AO.BP e B'=BO.AP. O quarto ponto D do conjunto harmónico é AB.A'B'=D. A e B são pontos diagonais de A'PB'O, C e D são pontos de AB dos lados opostos do quadrângulo OP e A'B'.
Pretendemos ilustrar que quaisquer escolhas para O e P dão sempre o mesmo D e ver como a relação harmónica se mantémm por permutação dos elementos de um dos pares do quaterno, e tem como consequência o valor -1 para a razão cruzada correspondente.
O ponto O pode ser tomado como centro de uma perspetividade que transforma ABCD em A'B'C'D. Por isso, (a,b;c,d)=(a',b';c',d'). De modo análogo, P é o centro de uma perspetividade que transforma A'B'C'D em BACD e, por isso, (a',b';c',d)=(b,a;c,d). Conclui-se finalmente que (a,b;c,d)=(b,a;c,d). E, como (b,a;c,d)=1/(a,b;c,d), (a,b;c,d)=-1.