Há inversão entre duas circunferências quaisquer? (2)

2º caso:
Dadas duas circunferências $(C_1)$ e $(C_2)$ (exteriores uma à outra) que não se intersetam, determinar uma inversão que transforme uma na outra.

Para definir uma inversão, precisamos do centro e do raio da circunferência de inversão.

Para seguir os passos de cada construção a seguir apresentadas, desloque o respetivo cursor $\;\fbox{ n }$

Usando a homotetia de razão positiva de centro $O_e$.
Determinação de $I(O_e, O_eT^2)$


  1. Sabemos que quaisquer duas circunferências $(C_1)$ e $(C_2)$ são homotéticas.
  2. No caso que estudamos nesta entrada, as circunferências $(C_1)$ e $(C_2)$ não se intersetam. Tomamos, em primeiro lugar o centro $O_e$ da homotetia de razão positiva que transforma $(C_1)$ e $(C_2)$ para centro da inversão. Falta determinar o raio da circunferência de inversão.
  3. Seja $P$ um ponto qualquer de $(C_1)$. A reta $O_eP$, se não é a tangente a $(C_1)$ em $P$ tirada por $O_e$, corta a circunferência $(C_1)$ num outro ponto $Q$ e $(C_2)$ em dois pontos que designamos por $P'$ e $Q'$. Já sabemos que a homotetia de centro em $O_e$ transforma $P$ em $Q'$ e $Q$ em $P'$. Para que o inverso de $P$ relativamente a $O_e$ ser $P'$, este estará sobre a corda da circunferência de inversão que une os pontos de tangência das tangentes a esta tiradas pelo ponto $P$ a ela exterior.
    Os pontos de tangência estarão, neste caso, na perpendicular a $PO_e$ em $P'$ com a circunferência de diâmetro $PO_e$. Seja $T$ um deles. A circunferência de inversão de centro $O_e$ que transforma o ponto $P$ genérico de $(C_1)$ no ponto $P'$ de $(C_2)$ tem raio $O_eT$.

Usando a homotetia de razão negativa de centro $O_i$.
Determinação de $I(O_i, O_iR^2)$




  1. Na construção acima, tomamos a homotetia de razão negativa com centro $O_i$.
  2. Para determinar o raio $r$ da circunferência de inversão de centro em $O_i$ que transforma $P$ num ponto $P'$ tal que $O_iP \times O_iP'= r^2$, estando $O_i$ entre $P$ e $P'$, tomamos uma circunferência de diâmetro $PP'$ e a perpendicular a $PP'$ tirado por $O_i$. Ficamos com o triângulo $PRP'$ retângulo em $R$, do qual $O_iR$ é a altura relativa a $R$ ou à hipotenusa $PP'$ $O_iR$ é a média geométrica de $PO_i$ e $O_iP$, ou seja, $O_iP\times O_iP'=r^2$ -
  3. Uma circunferência $(C_1$ de que $P$ é um ponto genérico é transformada, pela inversão acima determinada, na circunferência $(C_2)$.
  4. Claro que, por $I(O_i, r^2)$ podemos determinar diretamente outra circunferência inversa de $C_1)$ que é a imagem da circunferência $(C_2)$ dada relativamente a $O_i$, como se pode ver a dado passo da construção feita.
  5. Não usámos o método da tangente do caso anterior já que a circunferência de diâmetro $PO_i$ não corta a circunferência $C_2$ dada. Obviamente também não podíamos usar o método dos pontos de interseção das circunferências dadas, já que elas não se intersetam.
  6. Este procedimento é equivalente a:
    • Determinar $O_i$ como centro da homotetia negativa que transforma $(C_1)$ em $(C_2$
    • Determinar a circunferência $(K)$ como imagem pela reflexão relativa a $O_i$ de $(C_2)$
    • Claro que $O_i$ é o centro da homotetia positiva entre $(C_1)$ e $(K)$ e calcular $r$ por algum dos métodos já utilizados: circunferência de centro $O_i$ e a passar pelos pontos de interseção das circunferências $(C_1)$ e $(K)$, ou pelo método das tangentes usado no caso em que recorremos à homotetia positiva que relaciona duas circunferências.

© geometrias,3 de Dezembro de 2013, Criado com GeoGebra