Elementos: Relações entre as arestas dos sólidos inscritos numa dada esfera

Proposição 18:
Para definir os lados das cinco figuras e compará-los uns com os outros.


Consideremos a esfera dada definida pela semi-circunferência de diâmetro $\;AB\;$ em que se inscrevem um tetraedro, um octaedro, um hexaedro, um dodecaedro e um iscosaedro. As construções dessas figuras sólidas foram sendo apresentadas em recentes páginas deste "lugar geométrico".


© geometrias. 14 de Outubro de 2015, Criado com GeoGebra



  1. Tomemos um ponto $\;C\;$ de $\;AB\;$ tal que $\;AC=CB\;$ e um ponto $\;E\;$ da semi-circunferência de diâmetro $\;AB\;$ e da perpendicular a $\;AB\;$ tirada por $\;C.\;$ Sabemos que $\;AC=CB\;$ ou $\;AB=2.BC$ e por serem iguais os catetos $\;AE, \;EB\;$ do triângulo retângulo de hipotenusa $\;AB\;$ $$\;AB^2=2.BE^2.\;$$ Como tínhamos visto que o quadrado sobre o diâmetro da esfera é o dobro do quadrado da aresta do octaedro nela inscrito, é certo que $\;BE\;$ é igual ao lado (aresta) do octaedro inscrito na esfera de diâmetro $\;AB.\;$
  2. Tomando um ponto $\;D\;$ de $\;AB\;$ tal que $\;AD=2.DC\;$ e um ponto $\;F\;$ da semi-circunferência de diâmetro $\;AB\;$ e da perpendicular a $\;AB\;$ tirada por $\;D.\;$
    1. Sabemos que $\;AD=2.DB\;$ é o mesmo que $\;AB=3.DB\;$ ou $\;AB= \displaystyle \frac{3}{2} AD.\;$ E, por serem equiangulares os triângulos $\;BAF,\;$ retângulo em $\;F\;$ e $\;DAF,\;$ retângulo em $\;D,\;$ podemos escrever $$\frac{BA}{AF}=\frac{FA}{AD}= \frac{BF}{FD},$$ de onde se retira que $\;BA.AD=AF^2 .\;$ Como $\;\displaystyle \frac{BA}{AD}= \frac{AB.AB}{AD.AB}=\frac{AB^2}{AF^2} ,\;$ temos $$AB^2 = \frac{3}{2} . AF^2$$ Como antes tínhamos visto que o quadrado do diâmetro de uma esfera é uma vez e meia o quadrado do lado (aresta) do tetraedro nela inscrito, é certo que $\;AF\;$ é igual ao lado (aresta) do tetraedro inscrito numa esfera de diâmetro $\;AB\;$
    2. Sendo $\; AB=3.DB\;$ e, porque os triângulos $\;BAF,\;$ retângulo em $\;F,\;$ e $\;FBD, \;$ retângulo em $\;D,\;$ são equiangulares, podemos escrever $$\frac{AB}{BF}=\frac{FA}{FD}= \frac{BF}{BD},$$ de onde se retira que $\;AB.BD=BF^2.\;$ Como $\;\displaystyle \frac{AB}{BD}= \frac{AB.AB}{AB.BD}=\frac{AB^2}{BF^2}\;$ temos $$AB^2 =3BF^2.$$ Como antes tínhamos visto que o quadrado do diâmetro de uma esfera é o triplo do quadrado da aresta do cubo nela inscrita, é certo que $\;BF\;$ é igual ao lado (aresta) do cubo inscrito na esfera de diâmetro $\;AB\;$

    1. Tomando um ponto $\;G\;$ na perpendicular a $\;AB\;$ tirada por $\;A\;$ e de tal modo que $\;AG=AB\;$ e consideremos os pontos $\;H\;$ de interseção da semi-circunferênca com $\;CG\;$ e $\;K\;$ de $\;AB\;$ e pé da perpendicular a $\;AB\;$ tirada por $\;H.\;$ Como $\;GA=AB=2.AC\;$ e por $\;GA \parallel HK\;$ podemos escrever $\;\displaystyle \frac{GA}{AC} =\frac{HK}{KC}\;$ e, por isso, $\;HK=2.KC,\;$ de onde $\;HK^2 = 4KC^2.\;$ Por ser retângulo em $\;K\;$ o triângulo $\;CHK,\;$ é $\;HC^2=CK^2+KH^2\;$ e, como $\;HC=CB\;$, podemos concluir que $\;BC^2 =4KC^2+Kc^2=5KC^2.\;$
      Sabendo que $\;AB=2BC\;$ e $\;AD=2DB, \;$ ao tirarmos $\;AD\;$ a $\;AB\;$ ficamos com $\;DB\;$ e tirando $\;DB\;$ a $\;BC\;$ ficamos com $\;DC,\;$ podemos dizer que $\;DB=2CD\;$ ou seja $\;BC= BD+DC= 2DC+DC=3CD\;$ e $BC^2=9CD^2.\;$ Assim por ser $\;BC^2 = 5CK^2=9CD^2, \;$ terá de ser $\;CK > CD .\;$
      Tomando agora os pontos $\;L,\;$ sobre $\;AB\;$ tal que $\;KC=CL,\;$ e $\;M\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;L\;$ com a semi-circunferência, sendo $\;KL = 2CK,\; AB=2BC, BC^2=5CK^2\;$, é $\;AB^2=5KL^2.\;$
      Como antes tínhamos visto que o diâmetro da esfera é cinco vezes o raio do círculo a partir do qual se constrói o icosaedro nela inscrito, é certo que $\;KL\;$ é o raio do círculo a partir do qual se constrói o icosaedro inscrito numa esfera de diâmetro $\;AB\;$. $\;KL\;$ é o lado do hexágono inscrito nesse círculo de partida e o lado do pentágono inscrito nesse mesmo círculo é igual à aresta do icosaedro. Da construção do icosaedro, lembramos que o diâmetro $\;AB\;$ da esfera era composto por um lado do hexágono inscrito na circunferência de raio $\;KL\;$ acrescentado de dois lados de decágono inscrito em circunferências de raio $\;KL, \;$ o que nos alerta para que $\;AK=LB\;$ é o lado do decágono inscrito na circunferência de raio $\;KL\;$. Como já tínhamos visto $\;HK=2KC,\; KL=2KC, \;KC=CL\;$ e, em consequência, $\;LM=KC=KL\;$. Temso assim um triângulo $\;BML,\;$ retângulo em $\;L\;$ sendo os catetos $\;BL,\;LM\;$ respetivamente iguais ao lado de um decágono e ao lado de um hexágono ambos inscritos numa circunferência de raio $\;KL\;$. Por isso, a sua hipotenusa $\;BM\;$ é o lado do pentágono regular inscrito no mesmo círculo de raio $\;KL,\;$ sendo assim certo que
      $\;BM\;$ é igual ao lado (aresta) do icosaedro inscritível numa esfera de diâmetro $\;AB.\;$
    2. Vimos, na entrada relativa a essa construção, que a aresta do dodecaedro inscritível numa esfera de diâmetro $\;AB\;$ é a parte maior de uma divisão em média e extrema razão da aresta do cubo inscritível na mesma esfera. Sendo $\;FB\;$ igual a cada lado dos quadrados que formam o cubo inscrito na esfera de diâmetro $\;AB,\;$ determinamos o ponto $\;N\;$ que divide o segmento $\;FB\;$ em duas partes $\;FN, \;NB\;$, sendo $\;BN > NF\;$ e $\;\displaystyle \frac{FB}{BN}=\frac{BN}{NF} \;$ equivalente a $\;NB^2=NF.FB\;$ e é certo dizer que $\;NB\;$ é igual à aresta do dodecaedro regular inscritível numa esfera de diâmetro $\;AB.\;$
Concluindo: Pode ter interesse ainda comparar as arestas do icosaedro e do dodecaedro (ambos inscritos na mesma esfera): A aresta do icosaedro ($\;MB\;$) é maior que a aresta do dodecaedro ($\;NB\;$) (inscritos numa esfera de diâmetro $\;AB\;$ qualquer).

  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements