Secantes a uma circunferência passando por um ponto exterior
e que determinam cordas de comprimento dado.

Problema:
São dados um ponto $\;P,\;Q\;$ um círculo $\;c\;$ e um comprimento $\;a\;$
Traçar por $\;P\;$ uma secante à circunferência $\;c\;$ que a corte em cordas de comprimento $\;a\;$

©geometrias. 16 fevereiro 2016, Criado com GeoGebra

Pode acompanhar a construção da resolução do problema fazendo variar os valores de n no seletor centrado e no fundo da janela de visualização.



As cordas da circunferência $\;c\;$ com um dado comprimento $\;a\;$ são tangentes a uma circunferência concêntrica com $\;c\;$. Tomando um ponto $\;F\;$ qualquer sobre $\;c\;$ e $\;G \in c:\; FG=a,\;$ essa circunferência fica determinada pelo centro $\;O\;$ e pelo ponto $\;H\;$ médio de $\;FG.\;$ As tangentes a $\;(O, OH)\;$ tiradas por $\;P\;$ determinam cordas de $\;c: \;$ $\;LM,\;NQ;$ e $\;LM=NQ=a\;$

149. On donne un cercle et un point P. Mener par P une sécante telle que la corde interceptée ait une longueur donné l
Th. Caronnet. Éxércices de Géométrie. Deuxièmes Livre: La circonférence 5ème édition. Librairie Vuibert. Paris:1947