seis círculos iguais num retângulo

Problema: Na figura abaixo, cada um de seis círculos é tangente a três outros e quatro deles são também tangentes a um ou dois lados do retângulo que os contém. Determinar as relações entre o raio dos círculos iguais e as dimensões do retângulo.

© geometrias, 27 de Setembro de 2014, Criado com GeoGebra


Clique no botão de mostrar e ocultar     [□auxiliares]    para tornar visiveis pontos e segmentos auxiliares e as designações que lhe foram atribuídas para acompanhar a descrição da construção e dos cálculos.

Sejam $\;a=MN\;$ e $\;b=NO\;$ as dimensões do retângulo $\;[MNOP]\;$ e tomemos para unidade o diâmetro dos círculos amarelos.
Por simples observação da figura, temos $$\;AB=3, \;AD=1, \; AC=b-1, \;BC= a-1, \; AF=AD=DF=1 \;BE= \displaystyle \frac{5}{2}$$
  1. Como $\;AFD\;$ é equilátero, $\;DE\;$ é a sua altura e, aplicando o Teorema de Pitágoras a $\;ADE,\;$ temos $\;DE^2= AD^2-AE^2,\; BE=\displaystyle \frac{5}{2} \;$ ou seja, $\;DE^2 =1 -(\displaystyle \frac{1}{2})^2 = \frac{3}{4} :\; DE=\frac{\sqrt{3}}{2}\;$
  2. Aplicando o Teorema de Pitágoras ao triângulo $\;BED\;$, obtém-se $\;BD^2 = BE^2 + ED^2\;$ ou $\;BD^2= \displaystyle \frac{25}{4}+\frac{3}{4} =\frac{28}{4}: \; BD=\sqrt{7},\;$ e, como $\;BC= BD+DC, \;$ ou $a-1 = \sqrt{7}r+DC, \;$ então $\;DC= a-1-\sqrt{7}$
  3. Aplicando agora o Teorema de Pitágoras aos triângulos $\;ABC\;$ e $\;ACD,\;$ obtemos $$\begin{matrix} (a-1)^2 + (b-1)^2 =9 &\; \wedge \; &\left(a-1-\sqrt{7}\right)^2 +(b-1)^2 =1\\ (a-1)^2 -(a-1-\sqrt{7})^2 =8 &\;\wedge \; & \ldots \\ (a-1)^2 -(a-1)^2 -7 +2(a-1)\sqrt{7}=8 &\; \wedge \;& \ldots \\ 2(a-1)\sqrt{7}=15 &\; \wedge \;&\left(\frac{15\sqrt{7}}{14} -\sqrt{7}\right)^2 +(b-1)^2 =1 \\ a= 1+\frac{15}{2\sqrt{7}} &\;\wedge \; &\left(\frac{\sqrt{7}}{14}\right)^2 +(b-1)^2 =1 \\ \ldots & \; \wedge \; & (b-1)^2 = 1- \frac{1}{28}\\ \ldots & \;\wedge \;& b-1 =\sqrt{\frac{27}{28}}\\ a= 1+\frac{15}{2\sqrt{7}} &\;\wedge \; & b = 1+ \frac{3\sqrt{3}}{2\sqrt{7}} \;\;\; \; \square \end{matrix} $$ tomando para unidade o diâmetro dos círculos iguais.

em Garcia Capitán, F. J. Resolución de problemas bonitos de Geometría con métodos elementales Priego de Córdoba, 2003 sugerido por António Aurélio Fernandes